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Figure 1: Deconvolution results with DR-TV Method.

ABSTRACT
Smartphone camera lenses can crack at seemingly random times
and for no good reason, and repairing these cameras through of-
ficial channels can be prohibitively expensive1. These cracks can
turn sophisticated lenses into single element simple lenses, result-
ing in blurry images that render the camera essentially unusable.
This project implements and compares different deconvolution
techniques to retrieve high quality images from damaged lenses.
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1 INTRODUCTION
Modern lens designs employ multiple optical elements that work
in concert to minimize aberrations inherent to spherical lenses.
These aberrations include chromatic aberration, where different
wavelengths of light focus at different distances, and spherical
aberration, where light rays passing through different zones of the
lens focus at different points. While high-end photographic lenses
use numerous elements to correct these issues, they consequently
become bulky and expensive.

Mobile phone cameras represent a different design paradigm,
where space and cost constraints necessitate simpler lens construc-
tions. While these lenses have seen remarkable improvements in
1See Apple’s repair cost estimates for different IPhone models https://support.apple.
com/iphone/repair

quality over the past decade, their simplified design and exposed
position make them particularly vulnerable to damage. When a
phone’s lens is cracked or scratched, the carefully engineered multi-
element system can effectively degrade into a simple single-element
lens, introducing significant aberrations. These aberrations typ-
ically manifest non-uniformly across the image, resulting in a
spatially-variant Point Spread Function (PSF), where different re-
gions of the image exhibit distinct blur patterns based on their
position relative to the optical axis.

Recent work in computational deblurring techniques have shown
great promise in retrieving high quality images from such unde-
sireable lens conditions. This project surveys three of them, mainly,
Wiener Deconvoluiton, Total Variation (TV) Deconvolution with
ADMM for constant PSF, and TV Deconvolution with the Douglas-
Rachford algorithm for space-varying PSFs.

2 RELATEDWORK
Image deconvolution has been an active area of research for several
decades, with applications ranging from astronomical imaging to
computational photography. Here we review key developments
relevant to our work on recovering images from damaged phone
lenses.

2.1 Classical Deconvolution
The foundation of image deconvolution lies in classical techniques
such as Wiener filtering, which provides optimal linear filtering
in the presence of additive noise. While computationally efficient,
these methods often produce ringing artifacts and struggle with
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spatially-varying blur. Richardson-Lucy deconvolution, originally
developed for astronomical imaging, offers an alternative itera-
tive approach but similarly suffers from noise amplification and
boundary artifacts [7].

2.2 Optimization-Based Approaches
Modern approaches frame deconvolution as an optimization prob-
lem, typically incorporating image priors to improve robustness.
These optimization problems often have dual formulations that
have been extensively studied in the literature. The Alternating
Direction Method of Multipliers (ADMM), originally introduced by
[3] and re-surfaced by [1], has emerged as a powerful framework
for solving these problems efficiently.

Chambolle and Pock [2] introduced a first-order primal-dual
algorithm that provides an alternative optimization framework,
offering theoretical guarantees and practical efficiency for imaging
problems. Their work has been influential in developing algorithms
for various image processing tasks, including deconvolution with
multi-channel priors.

2.3 Spatially-Varying Deconvolution
The challenge of spatially-varying PSFs has been addressed by
several researchers. O’Connor and Vandenberghe [6] presented a
comprehensive approach using the Douglas-Rachford algorithm,
demonstrating its effectiveness for space-varying kernels. Their
method is particularly relevant for our work as it handles the vary-
ing blur patterns typical of damaged lenses.

2.4 Computational Imaging through Simple
Lenses

Heide et al. [4] extend on Optimization-Based Approaches and
Spatially-Varying Deconvolution by including cross-channel loss
terms to account for chromatic aberration, based on the First-Order
Primal-Dual algorithm introduced by Chambolle and Pock[2].

3 BACKGROUND
3.1 Imaging Model
The image capturing process is modeled as a convolution of the
ground truth image 𝑖 with a PSF kernel 𝑘 , usually modeled as a
circular low-pass filter, with additive noise 𝑛 due to in-camera
processes such as the conversion of the original analog signal to
digital data. name the resulting blurry image 𝑏:

𝑏 = 𝑖 ∗ 𝑘 + 𝑛

This can be equivalently expressed as a matrix-vector problem by
letting b, i and k be the vectorized forms of 𝑏, 𝑖 and 𝑘 respectively.
The convolution operation can then be expressed as multiplication
with a matrix 𝐾 constructed from the kernel k where row of 𝐾
represents the kernel centered at a different pixel position. This
gives us:

b = 𝐾 i + n
Finally, we can write an equivalent representation of the imaging
model with the Convolution Theorem as

F {𝑏} = F {𝑖}F {𝑘} + 𝑛

3.2 The Deconvolution Problem
The deconvolution problem, at its core, involves retrieving the
ground truth image 𝑖 from a convolved image 𝑏. This can be done
in a blind setting, where the kernel 𝑘 is unknown, or in a non-blind
setting, where 𝑘 is known. This project tackles the latter, where the
PSF is known.

One key observation is that with a known PSF 𝑘 , in a noise-
free setting, frequency domain representation allows us to directly
unfilter an image 𝑏 to retrieve the ground truth image 𝑖:

𝑏 = 𝑖 ∗ 𝑘 ≜ F {𝑏} = F {𝑖}F {𝑘}

⇒ F {𝑖} = F {𝑏}F {𝑘}

⇒ 𝑖 = F −1
{
F {𝑏}
F {𝑘}

}
However, such scenarios are unrealistic, and implementing the
above equation in a real world setting with noise produces bad
results (see Appendix A). To tackle this issue, image priors can be
added to the problem in order to increase robustness. This is done
in Wiener Deconvolution by taking into account signal-to-noise
ratios (SNR) at different frequencies computed thorugh natural
image statistics.

In general, we express deconvolution as a constrained least-
squares reconstruction problem, where the reconstructed image is
regularized to have sparse gradients, common with natural images.
More formally, we write the problem as

𝑖 = argmin
𝑥
∥𝐾𝑥 − 𝑏∥22 + 𝜆∥∇𝑥 ∥

𝑛
𝑛

Where 𝐾 is the matrix-vector representation of the convolution
with the kernel 𝑘 . In this project, we use the Total Variation (TV)
constraint, which sets out to minimize the L1 norm of the image’s
gradient.

3.3 ADMM
The Alternating-Direction Method of Multipliers (ADMM) is a gen-
eral framework for solving minimization problems in the form
of

minimize 𝑓 (𝑥) + 𝑔(𝑧)
subject to 𝐴𝑥 + 𝐵𝑧 = 𝑐

The ADMM algorithm is used to solve problems in this form
iteratively and efficiently by introducing a dual variable𝑦 that splits
𝑓 (𝑥) and 𝑔(𝑧) into independent problem. This strucutre is usually
exploited by formulating 𝑓 and 𝑔 such that their proximal operators
are computationally cheap, allowing for low complexity operations
within the iterative loop.

3.4 ADMM-based deconvolution
The deconvolution problem stated in Section 3.1 can be converted
into an ADMM problem as:

𝑓 (𝑥) = 1
2
∥𝐾𝑥 − 𝑏∥22

𝑔(𝑧) = 𝜆∥𝑧∥1
𝐴 = ∇, 𝐵 = −𝐼 , 𝑐 = 0

2



With this formulation, the objective can be minimized through
the following algorithm:

Algorithm 1 ADMM-TV for Deconvolution with constant PSF

1: Initialize: 𝑥0 = 0, 𝑧0 = 0, 𝑢0 = 0
2: for 𝑘 = 0, 1, . . . , 𝑁 − 1 do
3: 𝑣𝑘 ← 𝑧𝑘 − 𝑢𝑘
4: 𝑥𝑘+1 ← proximal𝑥 (𝑣𝑘 )
5: 𝑣𝑘 ← ∇𝑥𝑘+1 + 𝑢𝑘
6: 𝑧𝑘+1 ← proximal𝑧 (𝑣𝑘 )
7: 𝑢𝑘+1 ← 𝑢𝑘 + ∇𝑥𝑘+1 − 𝑧𝑘+1
8: end for
9: return 𝑥𝑁

The proximal operators for this formulation of the deconvolution
problem have efficient closed-form solutions:
• proximal𝑥 (𝑣) is an unfiltering operation:

𝑥𝑘+1 = F −1
{ F {𝐾}∗F {𝑏} + 𝜌 (F {∇𝑥 }∗F {𝑣1} + F {∇𝑦}∗F {𝑣2})
F {𝐾}∗F {𝐾} + 𝜌 (F {∇𝑥 }∗F {∇𝑥 } + F {∇𝑦}∗F {∇𝑦})

}
Note that the only values computed per iteration are F {𝑣1}
and F {𝑣2}, all other values can be pre-computed to incrase
the efficiency.
• proximal𝑧 (𝑣) is the soft-thresholding operator with thresh-
old 𝜆/𝜌 :

𝑧𝑘+1 = sign(𝑣)max( |𝑣 | − 𝜆/𝜌, 0)

3.5 Douglas-Rachford Splitting
The Douglas-Rachford Splitting algorithm (DR) has a slightly dif-
ferent setup than ADMM. In it, we set to

minimize 𝑓 (𝑥) + 𝑔(𝑧)
subject to 𝐴𝑥 = 𝑧

This is quite similar to the ADMM formulation. Like it, we use a
dual variable 𝑦 to split and connect 𝑥 and 𝑧, and employ an iterative
approach to the optimization.

3.6 Spatially-Varying PSF Deconvolution
We follow the Nagy-O’Leary [5] formulation for Spatially-Varying
PSFs in the implemented deconvolution approach, mainly,

𝐾 =

𝑃∑︁
𝑝=1

𝑈𝑝𝐾𝑝

where 𝐾 is the matrix representation of the spatial PSF kernel, with
each 𝐾𝑝 representing the constant PSF for a given patch of the
image 𝑝 , and each 𝑈𝑝 being a diagonal matrix that weights how
much different pixels are affected by different kernels. With this
model, we can express the deconvolution problem as a DR problem
as

minimize
1
2
∥𝐾𝑥 − 𝑏∥22 + 𝜆∥∇𝑥 ∥1

The key insight is that with the Nagy-O’Leary model, the fidelity
term can be split into independent parts in the context of a DR
problem, by letting

𝑓 (𝑥) = 0

𝑔(𝑧1, . . . , 𝑧𝑃 ,𝑤) =
1
2
∥𝑈1𝑧1 + · · · +𝑈𝑃𝑧𝑃 ∥22 + 𝜆∥𝑤 ∥1

𝐴 = [𝐾1, . . . , 𝐾𝑃 ,∇]

Where

𝐴𝑥 = [𝐾1𝑥, . . . , 𝐾𝑃𝑥,∇𝑥]

meaning that a solution that minimizes 𝑓 (𝑥) + 𝑔(𝑧) where 𝐴𝑥 = 𝑧

minimizes

0 + 𝑔(𝐴𝑥) = 1
2
∥𝑈1𝐾1𝑥 + . . . +𝑈𝑃𝐾𝑃𝑥 ∥22 =

1
2
∥𝐾𝑥 − 𝑏∥22 + 𝜆∥∇𝑥 ∥

The iterative solver is closely adapted from the original author’s
of [6] MATLAB implementation2

4 METHODS
Themain challenges of this project were to implement the algorithm
outlined in section 5.4 of [4] and to accurately record the spatially
varying PSF of my phone’s damaged lens.

4.1 Algorithm implementation
All of the code used in this project can be found in the following
open sourced repository3. I implemented the discussed algorithms
in Python making use of SciPy4, NumPy5 and OpenCV6. Usage and
more implementation detail can be found at the repository.

As previously mentioned, the Python implementation of the
Douglas-Rachford TV deconvolution is heavily based on O’Connor
and Vandenberghe’s MATLAB implementation, including greater
detail not explicitly described in paper. For a more involved discus-
sion of the implementation, see Appendix C.2.

4.2 PSF estimation
Using a linear stage, I translated a point light source relative to the
camera’s optical center and recorded its PSF directly on smaller
patches of the image. This was especially complicated as the camera
in question had a wide angle field of view of 120 degrees, making it
difficult to translate the light source and camera without loosing
light. To account for this, I normalized all PSFs equally. The resulting
PSF measurement can be seen in Figure 2.

5 RESULTS
Comparison of runtime and quantitative quality metrics for single
PSF vs. spatially-varying PSF. Qualitative comparison of methods

In order to evaluate the presented algortihms, synthetic data
was manufactured to model the constant PSF case and the spatially-
varying PSF case.

2https://github.com/danielvoconnor/TV_deblur_spaceVariantKernel/blob/master/
tvDeblur_varBlur_freeBCs_DR.m
3https://github.com/fzmautner/463-final-project
4https://scipy.org/
5https://numpy.org/
6https://opencv.org/
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Figure 2: 3 × 3 grid of Spatially-Varying PSF of my damaged
phone’s lens

5.1 Spatially-Invariant PSF
This section evaluates the performance of the ADMM-TV algorithm
and compares it to a baseline Wiener Deconvolution approach. The
ADMM-TV algorithm shows significant improvement over Wiener
deconvolution in both noise handling and edge preservation, as
shown in Figure 3.

Figure 3: Left: Original image. Middle: Image with gaussian
blur and noise. Right: Image recovered with ADMM-TV de-
convolution after 30 iterations.

A quick comparison to an off-the-shelf Wiener deconvolution
method by scikit-image (with the same PSF) reveals, as expected,
better qualitative performance by ADMM-TV, avoiding the artifacts
seen in the Wiener deconvolved image while maintaining detail
restoration.

The regularization parameter 𝜆 plays a crucial role in the quality
of reconstruction. Higher values of 𝜆 result in smoother images with
less noise but at the cost of losing fine detail, while lower values
preserve more detail but may amplify noise. Figure 5 demonstrates
this tradeoff across different 𝜆 values.

ADMM-TV’s efficient runtime allows for channel-wise deblur-
ring of color images with minimal computational overhead. The
runtime of ADMM-TV is discussed alongside that of DR-TV in
Section 5.2. Figure 6 shows the algorithm’s effectiveness on color
images.

However, the assumption that the same PSF is applied over each
kernel fails to consider the effects of chromatic aberration that a real
lens can cause, especially if simple or damaged. This is discussed in
more detail in Section 6.1 under Color and Chromatic Aberration.

Figure 4: Left: Image recovered with ADMM-TV decon-
volution after 30 iterations. Right: Image recovered with
skimage.restoration.wiener with the best balance parame-
ter.

Figure 5: Effect of different 𝜆 values on reconstruction qual-
ity. Left: 𝜆 = 0.1 showing over-smoothing. Middle: 𝜆 = 0.01
balancing detail and noise. Right: 𝜆 = 0.001 preserving detail
but amplifying noise.

Figure 6: Color image deconvolution. Left: Original color
image. Middle: Blurred and noisy image. Right: ADMM-TV
reconstruction.

5.2 Spatially-Varying PSF
This section evaluates the performance of the DR-TV algorithm
and compares it to assuming an invariant PSF deconvolved with
ADMM-TV.

To simulate a damaged mobile phone lens, a spatially-varying
PSF is designed to have local gaussian PSFs with randomly dis-
tributed standard deviations. These local PSFs are weighted at each
pixel according to its distance from the center of the patch (See Ap-
pendix C.1). Notice in Figure 7 that the astronaut’s badge remains
relatively sharp while her face is heavily blurred, reflecting a wider
local PSF kernel at that patch in the image.
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Figure 7: Left: Spatially-Varying PSF with randomly dis-
tributed gaussian local PSFs. Right: Effect of varied PSF over
image showing non-uniform blurring effect.

The DR-TV algorithm is capable of retrieving significant detail
in the more blurred parts of the image, and the overall result looks
more consistent. However, some detail is lost, and much of the work
lies in the hand of the end user’s choice of hyperparameters, which
can significantly affect the final result.

Figure 8: Left: Original unblurred and image.Middle: Original
image with non-local blur and gaussian noise added to it.
Right: Recovered image with DR-TV after 100 iterations.

In a scenario such as this, the best that ADMM-TV can do is
assume a single, average PSF kernel, and treat it uniformly over the
image:

Figure 9: Left: Image recovered with DR-TV. Right: Image
recovered with ADMM-TV.

From using a single approximate kernel for the entire image, the
ADMM-TV solver is unable to reconstruct the image with spatial

awareness, and the end result looks less precise than its DR-TV
counterpart at similar noise levels.

However, the two algorithms vary greatly in terms of compu-
tational cost. Both were run for 100 iterations on an Apple M1
chip. The DR-TV algorithm ran for 4 minutes and 14 seconds (2.54
iterations per second), compared to just four seconds (21.51 itera-
tions per second) for the ADMM-TV implementation. This reflects
in a speedup of over 8×, which while not insignificant, is much
lower than 25×, which would reflect a naïve implementation of
deconvolution with now 25 unique PSF kernels.

Finally, the loss curves for each method confirm the dominance
of DR-TV in this scenario: Noticeably, both methods converged at

Figure 10: Fidelity loss over iterations for DR-TV (blue) and
ADMM-TV (orange).

approxmiately 20 iterations, but whereas ADMM-TV plateaued, the
DR-TV solution went on to slowly degrade.

5.3 Real World Spatially-Varying PSF
Using the same pipeline outline above, I used my phone’s calibrated
Spatially-Varying PSF to perform deconvolution:

Figure 11: Left: Original Image captured fromdamaged phone
lens. Right: Deconvolved image with measured Spatial PSF.

At a first glance, the effects of deconvolution aren’t very no-
ticeable. This is likely due to an innacurate PSF measurement or
suboptimal hyperparameters. Taking a closer look at the corners,
where the blur is strongest, however, indicates an improved image
with less noise:
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Figure 12: Left: Zoom in in Original Image. Right: Zoom in
in Deconvolved image.

6 LIMITATIONS AND FUTUREWORK
While the methods presented in this work show promising results
for deblurring images with various PSFs, there are several limita-
tions and opportunities for future work:

6.1 Color and Chromatic Aberration
The current implementation processes works on single channel
images, and color images can be composed by independently de-
convoluting each channel. The implicit assumption that the PSF is
constant under differnt channels does not reflect real world condi-
tions, where the wavelength of incoming light plays an important
role in the lens’ PSF. This is particularly limiting when dealing with
chromatic aberration, which is especially common in simple, cheap
lenses. For a more complete treatment of color in spatially-varying
deblurring, see [4].

6.2 Future Directions
Several promising directions could extend this work:
• Machine Learning Integration: Recent work has shown
success incorporating deep neural networks into traditional
optimization frameworks. (CITE some).
• Automated PSF Estimation: The current approach re-
quires manual PSF measurement. An automated method
to estimate the spatially-varying PSF directly from blurred
images would make the technique more practical.
• Blind Deconvolution: The current approach relies on the
user knowing the PSF of their lens. This may not always
be practial, especially in commercial applciations such as
damaged mobile camera imaging enhancement. As such,
blind deconvolution approaches such as (CITE 3 or so) may
be more appropriate.
• Real-time Processing: The iterative nature of the algo-
rithm makes it computationally intensive. Exploring parallel
implementations or more efficient optimization techniques
could enable real-time applications.
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A NAÏVE UNFILTERING ANDWIENER
DECONVOLUTION

Even with minimal added noise and blur, Naïve deconvolution by
unfiltering rarely works, as illustrated below:

Figure 13: Naïve unfiltering results. Top Left: Fourier Trans-
form of original blurry image. Top Right: Fourier Trandform
of PSF. Bottom Left: Fourier transform of unfiltering. Bottom
Right: Inverse Fourier Transform of unfiltered image.

B MORE RESULTS
B.1 DR-TV
One intersting Space-Varying PSF to model is that of a simple
lens that suffers from geometric distortion. This type of aberration
manifests as objects near the edges of the image appearing stretched
out. We can simulate this effect using a Non-Local PSF by simply
stretching out the local gaussian kernels proportionally to their
distance from the center of the PSF grid:

Figure 14: Radially distorted PSF grid

Figure 15: Radially distorted and blurred image

Applying this to the image:
DR-TV is able to successfully recover the original image:

Figure 16: Left: Original. Middle: Radially distorted and noisy
image. Right: Recovered

Figure 17: Isolated reconstructed image.
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C IMPLEMENTATION DETAILS
C.1 PSF Modelling
Unlike [6], which uses a mostly rectangular weighing function for
image patches, the weights used in this project follow a natural
decay estabilished as a function of the distance of a pixel to the
center of the local PSF’s patch. This is illustrated below:

Figure 18: Weight matrices𝑈 for different local PSFs

C.2 Algorithm Implementation
The Douglas-Rachford splitting algorithm was implemented in
Python following O’Connor and Vandenberghe’s original MAT-
LAB code. The algorithm requires careful handling of boundary
conditions, using circular boundary conditions for the convolution
operations and thus requiring zero-pading to the image during the
deconvolution process. This is handled internally and the padding
size is computed as half of the a local PSF’s size.
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